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Abstract 

Background 

Several different gene expression signatures have been proposed to predict 

response to therapy and clinical outcome in lung adenocarcinoma. Herein, we 

investigate if elements of published gene sets can be reproduced in a small dataset, 

and how gene expression profiles based on limited sample size relate to clinical 

parameters including histopathological grade and EGFR protein expression. 

Methods 

Affymetrix Human Genome U133A platform was used to obtain gene expression 

profiles of 28 pathologically and clinically annotated adenocarcinomas of the lung. 

EGFR status was determined by fluorescent in situ hybridization and 

immunohistochemistry. 

Results 

Using unsupervised clustering algorithms, the predominant gene expression 

signatures correlated with the histopathological grade but not with EGFR protein 

expression as detected by immunohistochemistry. In a supervised analysis, the 

signature of high grade tumors but not of EGFR overexpressing cases showed 

significant enrichment of gene sets reflecting MAPK activation and other potential 

signaling cascades downstream of EGFR. Out of four different previously published 

gene sets that had been linked to prognosis, three showed enrichment in the gene 

expression signature associated with favorable prognosis.  

Conclusions 

In this dataset, histopathological tumor grades but not EGFR status were associated 

with dominant gene expression signatures and gene set enrichment reflecting 

oncogenic pathway activation, suggesting that high immunohistochemistry EGFR 

scores may not necessarily be linked to downstream effects that cause major 
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changes in gene expression patterns. Published gene sets showed association with 

patient survival; however, the small sample size of this study limited the options for a 

comprehensive validation of previously reported prognostic gene expression 

signatures.  

 

 

 



Background 

Lung cancer is the most common invasive cancer worldwide. In the year 2005 

approximately 172.570 new cases were diagnosed in the United States. [1] In 

addition, it is the leading cause of cancer associated death. [2] Lung cancer includes 

a broad variety of histological subtypes classified either as small cell lung cancer 

(SCLC) or non-small cell lung cancer (NSCLC). NSCLC comprises approx. 80% of all 

lung cancers and is further divided into lung adenocarcinoma (LAC) (~28%), 

squamous cell carcinoma (SCC) (~44%), and large cell carcinoma (LC) (~9%). 

However, many tumors are composed of mixed histological types. According to the 

WHO classification LAC are subdivided into acinar LAC, papillary LAC, 

bronchioloalveolar carcinoma (BAC), and solid LAC with mucin production as well as 

a mixed type. [2] The need for diagnostic improvement is underlined by the finding 

that independent lung pathologists find only 41% agreement on LAC 

subclassification. [3]  

Gene expression profiling techniques have led to new approaches to cancer 

classifications. [4] A number of studies have applied gene expression analyses to 

identify molecular subgroups of LAC. [5-29] Hierarchical clustering analyses have led 

to the identification of gene expression profiles associated with patient disease free 

survival or overall outcome in NSCLC. [5, 12, 16, 21, 22, 25, 26, 29] In particular, 

expression profiles of LAC did not correlate with tumor grade or conventional 

histopathological subgroups. [30, 31] Garber et al. and Bhattacharjee et al. applied 

unsupervised hierarchical clustering to classify human lung adenocarcinomas. [9, 14] 

Although these studies used different experimental microarray platforms, i.e. 

oligonucleotide and cDNA microarray, it was surprising to find that both studies show 

a high congruency in terms of the identified gene signatures. [9, 14] Beer et al. could 

demonstrate that gene expression profiles can be used to calculate a risk index 
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predicting patient survival in early stage LAC. [8] This gene expression signature 

conferring poor prognosis was independent of stage of disease at time of diagnosis. 

A subset analysis of 18 LAC provided by Kikuchi et al. identified an expression 

signature of 40 genes separating lymph-node positive from lymph-node negative 

cases. [19] Balko et al. applied gene expression data derived from cell lines showing 

differential sensitivity to EGFR tyrosine kinase inhibitors to classify human LAC. [6]  

Other studies also correlated gene expression profiles with prognosis and risk of 

recurrence. [12, 16, 20, 21, 25, 26, 29, 32] In these studies subsets of genes 

differentially expressed in tumors could predict survival differences among patients 

with LAC within consistent morphological subgroups. Shedden et al. collected gene 

expression data and clinical data of 442 LAC from six contributing institutions. In their 

multi-site blinded validation approach the combination of training-testing methods 

and clinical data (stage, age and sex) showed the best results in predicting the 

overall survival. [32] 

Potti et al. identified gene expression profiles predicting the risk of recurrence in a 

cohort of 198 NSCLC patients, among them 89 LACs. [25] They computed nine 

metagene-signatures containing altogether 133 elements using the metagene 

construction model and binary prediction tree analysis. The metagene-signatures 

were generated from a training cohort to predict the risk of recurrence and are 

available online as supplemental information. These signatures have been validated 

in two multicenter cooperative study group collectives.  

A similar study by Larsen et al. provided a 54-gene signature predicting the risk of 

recurrent disease independently of tumor stage. [21] Both studies point to the 

potential of gene expression methodologies to refine the accuracy of clinical 

prognosis for patients undergoing resection for primary LAC especially in early 

disease stages. 
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In our study we investigate if elements of published gene sets can be reproduced in a 

small independent dataset, and how gene expression profiles based on limited 

sample size relate to clinical parameters including histopathological grade and EGFR 

protein expression. 

 

 

 



Methods 

Patients and samples 

Tissues were selected from the tumor bank of the Institute of Pathology, University 

Hospital Freiburg. All tissue samples were collected for diagnostic purposes and 

studied in accordance with national ethical principles. The investigation protocol was 

approved by the institutional review board (No.14/2004). Clinico-pathological data 

were collected in collaboration with the Department of Thoracic Surgery, University 

Hospital Freiburg. Representative 3 µm sections of the tumor tissues were H&E 

stained and reviewed for tissue quality, cellular composition, confirmation of the 

histopathological diagnosis and tumor-grading independently by three surgical 

pathologists (GK, MW, AzH) according to the World Health Organization criteria and 

current TNM-classification. [2] Discordant cases have been discussed in common 

and a consensus was defined for the subsequent statistical analyses. Only samples 

with a tumor-cell content of more than 90% were used for molecular analyses. We 

analyzed tumor samples of 28 patients who underwent surgery between 2002 and 

2004 at the Department of Thoracic Surgery, University Hospital Freiburg. The mean 

age of the patients was 65.3 years. Forty-eight percent of the patients were male and 

52% female. All 28 tumors were initially classified as mixed type adenocarcinomas of 

the lung. For molecular analyses areas with homogeneous acinar growth pattern 

were selected. The majority of the tumors was moderately (n=15) or poorly 

differentiated (n= 10). The patients were operated with a curative intent. Therefore 

the operation was performed in early clinical stages (24% at T1-stage and 65.5% at 

T2-stage). In 83% lymph-node metastases were present at the time of surgery. Only 

in one case distant metastases could be evaluated. Two cases revealed residual 

tumor after surgical treatment. Clinico-pathological data are summarized in table 1. 
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Gene expression profiling 

Total RNA was extracted from each frozen tumor specimen using the Qiashredder 

(Qiagen, Hilden, Germany) and the RNeasy Kit (Qiagen, Hilden, Germany) and 

biotinylated cRNAs were generated according to the manufacturer’s protocol 

(Affymetrix, Santa Clara, CA). In brief, the biotinylated cRNA was purified using 

RNeasy affinity columns (Qiagen, Hilden, Germany). RNA quality control was 

assessed by the 260 nm and 280 nm absorbance ratio and gel electrophoresis. 

Further sample processing, including labeling, hybridization, and image scanning was 

performed using the standard Affymetrix protocol. Five µg of total RNA from each 

tumor specimen, T7-oligo(dT) primers, and Superscript II RT (Invitrogen GmbH, 

Karlsruhe, Germany) were used for first strand cDNA synthesis. After second strand 

synthesis, in vitro transcription was performed using Enzo Transcript Labeling Kit 

(Enzo Life Science, Farmingdale, NY) to generate biotinylated cRNA targets. cRNA 

targets were fragmented at 94°C for 35 minutes and 15 µg of it was hybridized to 

HG-U133A chips (Affymetrix Inc, Santa Clara, CA, USA) at 45°C for 16 hours. The 

arrays were washed and stained with 10 µg/ml streptavidin-phycoerythrin. After 

signal amplification with biotinylated anti-streptavidin antibodies the arrays were 

scanned using the GeneChip® Scanner 3000. The HG-U133A chip contains 22.283 

probe sets representing 14.564 human genes.  

 

Data analysis 

Following standard data acquisition, the scanned images were quantified according 

to the Affymetrix GeneChip Manual (Affymetrix Inc., Santa Clara, CA) by using the 

Data Mining Tool (DMT) 2.0, and Microarray Database software (accessed June 

2004) using the Entrez Gene definitions. The probe set IDs were annotated and, for 

comparison with published gene expression signatures, manually cross-referenced 
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using NetAffx Analysis Center provided by the homepage of the manufacturer 

(www.affymetrix.com, accessed May 2008). [33] The signals were globally 

normalized and scaled to a signal intensity of 500. All of the microarrays were 

examined for surface defects, grid placement, background intensity, housekeeping 

gene expression (GAPDH and β-Actin), and 3’-/5’- ratio of probe sets. For 

hybridization control the signals of the controls (BioB, BioC, BioD, and Cre), the scale 

factors and the background intensities of each array were calculated and compared. 

The present calls of hybridized microarrays showed a range from 33.2% to 59.9% of 

all investigated elements (median 55.05%). The mean 3’-/5’- ratio of probe sets for 

GAPDH and β-Actin was 1.07 (standard deviation: 0.6) and 1.44 (standard deviation: 

1.9), respectively. The spike-in controls showed an adequate expression in all cases. 

The average background signal - generally recommended being less than 100 - 

varied between 40.88 and 95.38 (median 53.73). The microarray dataset described 

in this work, including .cel-files, was deposited at the Gene Expression Omnibus 

under the series accession GSE17475. [34] 

Quality controls were performed using Microarray Suite 5.0 software provided by 

Affymetrix (www.affymetrix.com) according to the manufacturer’s recommendations. 

Data acquisition for gene expression analysis, starting from the .cel files, was 

performed using the robust multiarray average (RMA) algorithm published by Irizarry 

et al.. [35, 36] Prior to analysis by supervised and unsupervised clustering algorithms, 

the RMA-processed dataset was filtered applying a standard variation filter (default) 

provided by the dChip-Software V1.3 (www.dchip.org), version 2003. Two-

dimensional hierarchical clustering was performed in D-Chip (V1.3, 2003). Statistical 

analyses were performed using the publicly available R-Software V2.5.0 (www.r-

project.org). [37] Gene Set Enrichment Analysis (GSEA) was performed using 

publicly accessible software provided by the Broad Institute 
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(http://www.broadinstitute.org/gsea/msigdb/downloads.jsp). [38, 39] To identify 

biologically relevant gene sets for GSEA analysis, the search function provided by 

the website was used to identify curated gene sets (category c2 only) related to 

EGFR downstream signalling, using EGFR, ERK, MAPK as search terms 

(http://www.broadinstitute.org/gsea/msigdb/collections.jsp#C2).The algorithm 

computes an enrichment score (ES) that is based on Kolmogorov–Smirnov statistics, 

provides a nominal p-value, and corrects for multiple testing by calculating the false 

discovery rate (FDR). A significance level of FDR < 0.05 was accepted. For a 

detailed mathematical description of the statistical methods, see Ref. 39.  

 

Tissue microarray 

In order to perform standardized immunohistochemical analyses we generated a 

tissue microarray (TMA) of the 28 primary LAC containing 3 representative cores of 

each case to account for potential tumor heterogeneity. In cases with variable 

staining intensities across cores, the mean was recorded. 

 

Fluorescence in-situ hybridization 

Paraffin sections of 5 µm were dewaxed and washed shortly with PBS. As 

pretreatment the tissue sections were heated in citrate-buffer for 17 minutes and 

incubated with Pronase E at 37 °C for 3 minutes. Denaturation was performed by 

formamide 70% for 15 minutes at 75 °C and afterwards stabilized by ethanol. The 

sections were then hybridized with the Vysis EGFR/CEP7 Dual Color Probe for 20 

hours at 37 °C, after washing the probes were counterstained with Dapi. 
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EGFR immunohistochemistry 

All slides of the TMA were submitted to immunohistochemistry (IHC) at the same 

time. In brief, 3 µm thick paraffin sections were analyzed for protein expression of 

non-phosphorylated EGFR by IHC using the Dako EGFR pharm Dx™ kit 

(Dako,Germany). The staining procedure was performed according to the provided 

automated staining protocol on a DAKO autostainer. Afterwards the slides were 

immersed in hematoxylin for 3 minutes for nuclear counterstaining. For scoring of 

EGFR expression, the following qualitative scale: 0 – “negative”, 1 – “weak staining”, 

2 – “moderate staining”, 3 – “strong staining” was applied. Further the percentage of 

positive tumor cells was calculated. Both scoring systems were applied for 

membranous and cytoplasmic positivity.  
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Results 

Unsupervised Analysis of Microarray Data  

After normalization two-dimensional hierarchical clustering analysis was applied to 

determine if any clinical or biological subset existed in our set of 28 LAC. A final 

filtered gene list of 2777 probes selected by variation filter provided by dChip-

software was used. LACs were clustered into two distinct groups of 16 and 12 

samples (fig. 1). The two clusters revealed significant differences with respect to 

histopathological grading (grade 3 vs. grade 1 and 2; p< 0.001). All well differentiated 

LAC (G 1; n= 3) were found in cluster 1. In contrast, all poorly differentiated LAC (G 

3; n= 10) were present in cluster 2. Although the majority (n= 9) of moderately 

differentiated LAC (G2) was found in cluster 1, some of these tumors were grouped 

into cluster 2 (n= 6). No significant association between the two clusters and tumor 

stage, smoking status, gender, age or immunohistochemical EGFR protein 

expression was identified. Further, the major clusters obtained by unsupervised 

analysis did not reflect the clinical outcome with regard to overall survival.  

 

EGFR immunohistochemistry and FISH analysis in Relation to EGFR mRNA  

Due to multiple usage of the TMA in two cases the paraffin-embedded material was 

exhausted. Of the remaining 26 LAC samples nine showed no membranous 

expression of EGFR. In tumors with positive EGFR-immunohistochemistry 65.38% 

(+/- 36.35%) of the cells showed membranous and 88.64% (+/- 32.74%) 

cytoplasmatic staining. Complete membranous staining was seen in 6 cases 

(23.08%). For these, the intensity score was 3. The incomplete membranous stain 

was moderate (intensity score 2) in three cases, and strong (intensity score 3) in the 

remaining eight tumors. The gene expression values obtained by microarray 

analyses were concordant with EGFR detection on the protein level measured by 
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IHC with p < 0.01 for probe set 201983_s_at, and p < 0.02 for probe set 201984_s_at 

(Spearmans Rank Order Correlation, see fig. 2 and 3). 

EGFR-gene amplification was investigated with FISH analysis. On average 3.89 (+/- 

1.12) signals for the 7p12 EGFR locus and 3.12 (+/- 0.82) CEP 7 signals were 

detected within the tumor cells. The 7p12/CEP 7 ratio was 1.25 on average. No case 

revealed EGFR-gene locus (7p12/CEP 7 ratio > 2) amplification. No correlation was 

seen between number of EGFR-FISH signals and the intensity of 

immunohistochemical staining results. Results of the immunohistochemistry and the 

FISH analysis are shown in fig. 2 and summarized in table 2. 

 

Pathway Analysis  

In a supervised analysis approach, all genes (unfiltered gene set) were ranked 

according to differential expression in (1) EGFR score 3 vs. EGFR score 0&1&2, (2) 

EGFR score 2&3 vs. EGFR score 0&1, and (3) histopathological grade 3 vs. grade 

2&1. Gene Set Enrichment Analysis (GSEA) was used to test for enrichment of the 

pathway-related gene sets in the over expressed (top-ranked) or the down regulated 

(bottom-ranked) genes in each of the supervised analyses. When the dataset was 

ranked according to differential expression in histopathological grade 3 cases vs. 

cases classified as grade 2&1, the following gene sets showed significant enrichment 

after correction for multiple testing: ERBB signaling (KEGG), NSCLC related 

signaling (KEGG), EGFR/SMRT (Biocarta), and FAS anti-apoptotic signaling 

(Biocarta). Summarized results are shown in fig. 4A-D. In contrast, no significant 

enrichment was observed when the dataset was ranked according to EGFR status.  

For completeness, the other clinical parameters (age, nodal stage etc.) were used to 

group cases for additional GSEA runs; after correcting for multiple testing none of 
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these analyses showed any statistically significant enrichment of the selected gene 

sets. 

 

Assessment of published prognostic gene expression signatures 

The published gene signatures were used in two analysis approaches: In an 

unsupervised analysis, two-dimensional clustering was performed in the space of all 

genes that were represented on both the published and the U133A platform. 

Clustering in the space of the “Potti signature”, defined as the communality of all 

genes described as having any prognostic significance (overlap between platforms: 

114 probesets, representing 105 Genes, Additional file 1: Supplemental table S1), 

resulted in co-segregation of cases with similar outcome in two major clusters, one of 

which included 83% of long-term surviving patients, whereas the other cluster 

comprised 50% of patients with favorable outcome. Clustering in the space of the 

other signatures (Larsen 2007, Balko 2006, Chen 2008) did not produce comparable 

segregation of long term survivors vs. patients with unfavorable outcome. [6, 12, 21] 

In a second approach, GSEA was employed to test for enrichment of the signature 

components at the top of the total data set, ranked according to differential 

expression of genes between long-term and short-term survival. The gene sets of the 

Balko, and Chen but not of the Larsen signature showed statistically significant 

enrichment at the top of data set ranked by survival. The Potti signature showed a 

trend for enrichment but did not meet statistical significance (see fig. 4). In summary, 

these results suggest that the association between published prognostic gene 

expression signatures and outcome is detectable, but does not appear to be a 

dominant feature of this small independent data set.  
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Discussion 

In the present study we analyzed 28 LAC for gene expression profile by using the 

Affymetrix chip platform. Unsupervised hierarchical cluster analysis led to the 

identification of two subclasses of LAC. We found two clusters revealing significant 

differences with respect to histopathological grading. All well differentiated LAC (G 1) 

were found in cluster 1. In contrast, all poorly differentiated LAC (G 3) were present in 

cluster 2. The interesting finding that some of the moderately differentiated LAC were 

found in cluster 2, indicates that this subset of moderately differentiated LAC already 

share gene expression profiles with poorly differentiated LAC, which yet is not 

reflected by histopathology. Thus, gene expression analysis might help to identify a 

subgroup of G2-LAC, which already reveals the molecular features of poorly 

differentiated LAC but lacks typical histomorphological dedifferentiation. These 

features could be associated with a more aggressive biological behavior of the tumor 

cells.  

The grading system provided by the WHO classification is poorly defined and based 

on conventional histological criteria, including the extent to which the architectural 

pattern of the tumor resembles normal lung tissue and cytological atypia. In our study 

three experienced surgical pathologists reevaluated all cases for confirmation of the 

diagnosis and tumor grade. Discordant cases were discussed and a consensus 

grading was worked out. A recent study by Petersen et al. proposes a grading 

system for LAC based on the nuclear size variability. They could demonstrate that 

the core size variability of LAC tumor cells correlated significantly with the patient’s 

survival. [40] Our data indicate that the conventional grading system provided by the 

WHO classification is still unsatisfactory and does not reflect the biology of the tumor. 

Further studies correlating different grading systems and gene expression data will 

be necessary to answer this question profoundly. 
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In our study EGFR protein expression and number of EGFR gene copies were 

analyzed by immunohistochemistry and FISH, respectively. Consistent with the 

literature 86% (24/28 cases) of investigated tumor samples showed an expression of 

EGFR on protein level. [41-43] No correlation of EGFR status and the results of gene 

expression profiling could be detected. A similar result was found by Balko et al. who 

applied a gene signature predicting the sensitivity to EGFR tyrosine kinase inhibitors 

obtained from various cell lines to classify human lung adenocarcinomas. [6]  

In contrast to previous publications, reporting an amplification frequency of 

approximately 10%, no amplification of the EGFR locus was observed in this study. 

[41, 43] This discrepancy might in part be explained by the relative small number of 

LAC analyzed in this study. On the other hand our study, in contrast to other 

published data mainly arising from the US, originates from a homogeneous south 

German population, possibly reflecting genetic differences between different 

populations. No correlation between microarray data and TNM tumor stage, smoking 

status or gender was found. [32, 44]  

In a supervised approach we performed a pathway analysis confirming an 

overexpression of genes involved in signal cascades downstream to EGFR. The 

pathway related genes showed a correlation with the histopathological tumor grade 

(grade 3) but not with the EGFR protein expression as determined by the 

standardized Dako EGFR pharm Dx™ kit for detection of non-phosphorylated EGFR, 

reflecting membrane protein expression but not the activation-status of EGFR. This 

suggests that the immunohistochemical analysis may be less sensitive than gene 

expression profiles to detect biologically relevant tumor characteristics linked to 

EGFR signaling. 
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Several studies have used expression profiling to characterize prognosis in lung 

cancer. [5, 6, 12, 16, 21, 22, 25, 26, 29] We choose the works by Balko et al., Larsen 

et al., Potti et al. and Cheng et al. for further analysis.  

Individual unsupervised cluster analysis in the space of each of the genesets 

(combining all genes reported as being relevant per signature) failed to define robust 

clusters of cases, except the signature of 114 probe sets published by Potti et al. that 

resulted in some co-segregation of cases with similar outcome in our dataset. [25]   

GSEA analysis, used to test for enrichment of the individual prognostic gene sets 

confirmed significant over-representation of the signatures of Balko and Chen, and a 

trend towards enrichment of the Potti signature, in the top genes ranked by 

differential expression between long term survivors and patients with unfavorable 

clinical outcome, indicating an association between these gene expression 

signatures and the survival of the patients that remains to be characterized in larger 

sample sets. [6, 12, 25] 

 

Conclusions 

This study confirmed the limited value of published gene expression analyses to 

identify patients with poor outcome in a LAC dataset, as recently shown in a large 

multicenter study, particularly when applying it to smaller independent data sets. [32] 

In the light of the present data it seems unlikely, that a signature of only few mRNA 

measurements will be sufficient to reliably predict response/prognosis, particularly if 

applied to single cases or smaller series of patient samples. The gene expression 

signatures observed in this study seem to be mainly driven by the tumor grade, even 

more so than by EGFR protein expression detected by IHC and other clinical 

parameters. Therefore, a careful histopathological assessment and the use of 

consensus pathologist panels are recommended for future studies to standardize 
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histopathological annotation and to combine gene expression signatures with robust 

clinical parameters. 
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Figure Legends 

Fig. 1: Hierarchical cluster analysis identifies tumor grade as dominant                

substructure 

Hierarchical clustering of 2777 features selected by variation filter shows that the 

dominant substructure of the dataset is driven by tumor grade and not by EGFR 

status. All grade 3 tumors were segregated in one major branch. No correlation of 

EGFR status and the results of hierarchical clustering could be obtained. The upper 

bar shows the histopathological tumor grade (turquoise = grade 1, blue = grade 2 

and red = grade 3). The second bar shows the EGFR expression on protein level 

(pink = no protein expression, green = incomplete membranous stain and yellow = 

complete membranous stain). The expression values are indicated by color code 

(blue = no gene expression and red = high gene expression). 

 

Fig. 2: Quantitative and qualitative assessment of EGFR status  

A-D: Immunohistochemical stain for EGFR of primary lung adenocarcinoma 

(magnification: 200x). A) No membranous or cytoplasmic stain. B) Weak mostly 

incomplete membranous stain combined with moderate cytoplasmic stain. C) 

Moderate mostly incomplete membranous stain combined with weak cytoplasmic 

stain. D) Strong mostly complete membranous stain combined with strong 

cytoplasmic stain. E and F: E) Fluorescence in-situ hybridization for EGFR (locus 

7p12, red) and CEP7 (locus 7p11.1-q11.1, green) of primary lung adenocarcinoma 

showing no amplification of the EGFR-gen. F) Corresponding immunohistochemical 

stain for EGFR showing strong mostly incomplete membranous staining combined 

with moderate cytoplasmic staining.  
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Fig. 3: EGFR expression congruency  

A Comparison of the intensity of positive staining of EGFR obtained by 

immunohistochemistry and gene expression measured by Affymetrix gene chips: 

Gene expression values are congruent with EGFR detection on the protein level. The 

upper bar shows the EGFR expression on protein level (pink = no protein expression, 

green = incomplete membranous stain and yellow = complete membranous stain). 

The expression values of elements representing EGFR gene expression (middle) are 

indicated by color code shown in the lowest bar (blue = low gene expression and red 

= high gene expression). 

In B the results of the Spearmans Rank Order Correlation of the gene expression 

values obtained by microarray analyses and EGFR protein levels measured by IHC 

are shown. 

 

Fig. 4: GSEA Analysis. 

A–D summarize the results of the pathway-analysis: Four of the gene sets relevant 

for EGFR-related signaling made available by the GSEA web site (gene set collection 

“C2”) showed statistically significant enrichment towards the top of the data set when 

it was ranked according to differential gene expression between grade 3 vs. grade 

1&2 tumors. 

E–H show the results of GSEA, testing for enrichment of published prognostic gene 

expression signatures in our small independent data set when it was ranked 

according to differential gene expression between long-term survivors and patients 

with unfavorable outcome: The signatures of Balko et al. and Chen et al. were 

significantly enriched, and the Potti et al. signature showed a clear trend towards 

enrichment although it did not meet statistical significance. The Larsen signature was 

not overrepresented at the top of the ranked data set in this analysis.  
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ES = enrichment score, FDR = false discovery rate. A significance level of FDR < 

0.05 was accepted. 

 

 

 



Tables 

Table 1 

Clinico-pathological data of 28 LAC patients used for the generation of 

expression profiles. 

Code Age Sex Grade T N M R Smoker 

LAC_19 58 M 2 2 2 0 0 yes 

LAC_20 59 F 3 2 1 0 1 yes 

LAC_21 75 M 2 2 0 0 0 yes 

LAC_22 60 F 2 1 2 0 0 yes 

LAC_23 47 F 3 2 1 0 1 n.a. 

LAC_24 61 M 2 4 2 0 0 yes 

LAC_25 64 F 3 2 2 1 0 yes 

LAC_26 70 M 2 1 0 0 0 yes 

LAC_36 72 F 3 2 2 0 0 yes 

LAC_37 67 F 2 2 0 0 0 yes 

LAC_38 82 M 2 4 2 0 0 yes 

LAC_39 69 M 1 2 2 0 0 yes 

LAC_40 83 F 1 1 0 0 0 yes 

LAC_41 51 F 2 2 0 0 0 yes 

LAC_42 78 F 3 2 0 0 0 no 

LAC_43 59 F 2 4 2 0 0 yes 

LAC_45 69 M 2 2 0 0 0 yes 

LAC_47 56 M 2 1 2 0 0 yes 

LAC_49 72 M 3 2 2 0 0 yes 

LAC_51 65 M 3 2 2 0 0 yes 

LAC_52 70 F 2 2 1 0 0 yes 

LAC_53 62 F 3 2 1 0 0 yes 

LAC_54 54 F 2 1 0 0 0 yes 

LAC_55 77 F 2 2 0 0 0 yes 

LAC_56 67 M 3 2 0 0 0 yes 

LAC_57 73 M 2 1 0 0 0 yes 

LAC_58 56 M 3 2 1 X 0 n.a. 

LAC_61 76 F 1 2 0 X 0 n.a. 

 

Classification according to WHO and TNM-Classification (6thedition 2002). LAC = lung 

adenocarcinoma; Age = age at operation; F= female; M= male; T = tumor stage; N = 

absence (0), presence of ipsilateral peribronchial and/or ipsilateral hilar lymph node 

metastasis (1) or ipsilateral mediastinal and/or subcarinal lymph node metastasis (2); M = 
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absence (0) or presence (1) of distant metastasis; R = absence (0) or presence (1) of 

residual tumor; X = classification could not be assessed; n.a. = data not available. 

 

 



Table 2 

Results of the EGFR immunohistochemistry and FISH analysis of 26 LAC 

patients. 

 

 EGFR Immunohistochemistry  EGFR FISH 

 Membrane  Cytoplasm   

Code Membrane Intensity Percent   Intensity Percent    Centromere EGFR Locus Ratio 

Lu_19 complete 3 90  2 90  4.90 6.13 1.25 

Lu_20 negative 0 0  0 0  3.94 4.47 1.13 

Lu_21 incomplete 2 40  1 60  3.30 3.38 1.02 

Lu_22 incomplete 3 90  2 90  2.96 3.31 1.12 

Lu_24 complete 2 80  1 90  3.10 3.96 1.28 

Lu_25 incomplete 3 20  2 70  3.05 3.44 1.13 

Lu_26 complete 3 90  3 90  3.00 4.07 1.36 

Lu_36 incomplete 3 70  1 90  3.23 3.99 1.24 

Lu_37 incomplete 3 90  2 90  3.14 4.44 1.41 

Lu_38 complete 3 70  3 90  4.95 6.13 1.24 

Lu_39 negative 0 0  3 40  2.61 3.22 1.24 

Lu_40 negative 0 0  1 10  2.35 2.59 1.10 

Lu_41 negative 0 0  2 50  3.15 3.84 1.22 

Lu_42 incomplete 3 40  3 80  3.55 4.06 1.14 

Lu_43 incomplete 2 70  1 80  3.92 6.26 1.60 

Lu_45 incomplete 3 60  2 30  2.90 4.12 1.42 

Lu_47 complete 3 90  1 90  2.00 2.12 1.06 

Lu_49 negative 0 0  0 0  2.87 3.91 1.36 

Lu_51 incomplete 2 20  2 40  2.86 3.66 1.28 

Lu_52 negative 0 0  1 10  1.93 2.22 1.15 

Lu_53 complete 3 80  2 90  2.00 3.31 1.66 

Lu_54 incomplete 3 70  2 40  3.96 5.00 1.26 

Lu_55 negative 0 0  1 20  2.59 2.45 0.95 

Lu_56 negative 0 0  0 0  2.25 4.12 1.83 

Lu_57 incomplete 3 80  2 90  2.52 2.54 1.01 

Lu_61 negative 0 0  3 80  2.29 2.49 1.09 

 

 

 

 

 

 

 

 

 



 

Additional files 

 

Additional file 1: Supplemental table S1. 

 

Title: Genes extracted from nine metagene signatures according to Potti et al. 

Description: The table contains detailed information of the Affymetrix probe set 

numbers, gene names and gene symbols of the 114 genes extracted from nine  

metagene signatures according to Potti et al. 
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Balko_2006 0.20 0.00 0.00
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Potti_2006 0.17 0.15 0.20

Cheng_2008 0.49 0.02 0.03

Gene Set ES score
Nominal 
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